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1. Introduction

The classical problem of the evolution of incompressible viscous flow induced by an impulsively started circular cylinder
is one of the most widely studied problems in computational fluid dynamics. It has continued to generate tremendous inter-
est amongst researchers over the last century mainly because of the fact that it displays almost all the fluid mechanical phe-
nomena for incompressible viscous flows in the simplest of geometric settings. However, the flow structure is very complex,
especially for large Reynolds numbers, thus making the computation of the flow even more challenging and intriguing. Be-
cause of its popularity, a plethora of experimental, theoretical and numerical results are readily available for this problem in
the literature.

The theoretical studies related to this problem can be dated back to the work of Blasius [17] in 1908 which was generally
based on the boundary layer theory. This was further persisted by Goldstein et al. [18], Schuh [19], Wundt [20] and Watson
[21] all of whom considered the limiting case of infinite Reynolds number. Later on, Wang [22] and Collins and Dennis [23]
extended this work for finite but higher Reynolds numbers. In all the cases, results could be found only for short span of time
in the early stage of the flow after the start.
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Besides these theoretical works, for a better understanding of the phenomena of the unsteady wake formation, several
experimentalists [3,29-32,53-55] performed a series of tests based on the visualization the flow for various Reynolds
numbers. These experimental works have been of immense help to the computational fluid dynamics community; new
computational methods are being developed and consequently improved upon to solve this complex flow problem
[24-26,28,33-44]. We now have enough experimental data that can be compared with the outcome of the numerical results,
paving the way for computing complicated and extended flow phenomena for Reynolds numbers hitherto unexplored by
experimentalists.

Over the years, the second order central difference schemes, because of their easy and straight-forwardness in appli-
cation, have for quite some time been a popular choice for discrete approximation of partial differential equations. Such
methods are known to yield quite good results on reasonable meshes if the solution is well behaved. But for certain prob-
lems, such as the convection dominated flows, the solution may exhibit oscillatory behaviour if the mesh is not sufficiently
refined. However, mesh refinement invariably brings in additional points into the system resulting in an increased system
size and consequently more memory and CPU time are required to solve such problems on a computer. Again discretiza-
tion on a non-compact stencil (generally associated with higher-order accurate methods) increases the band-width of the
coefficient matrix arising out of the discretization process. Both mesh refinement and increased matrix band-width ulti-
mately result in increased arithmetic operations. Thus neither a lower-order accurate method on a fine mesh nor a higher-
order accurate one on a non-compact stencil could be computationally cost-effective. Therefore, of late, the Higher Order
Compact (HOC) finite difference schemes for the computation of incompressible viscous flows are gradually gaining pop-
ularity because of their high accuracy and advantages associated with compact difference stencils. A compact finite differ-
ence scheme is one which utilizes grid points located only directly adjacent to the node about which the differences are
taken. In addition, if the scheme has an order of accuracy greater than two, it is termed a higher-order compact method.
There exist several mechanisms through which finite difference schemes can achieve higher-order compactness. One of
them is based on Padé [2] approximation, which is an implicit relation between the derivatives and functions at adjacent
nodal points. These schemes [10,12-16] include information not only from the adjacent points to the node about which
the differences are taken, but also includes information from nodal points located at distance two or three steps away
from that node.

Another class of HOC schemes [4-9,11,45,47,49], which, in recent years have generated renewed interest amongst the
computational fluid dynamics community are the ones which utilize grid points located only directly adjacent to the node
about which the differences are taken and the dependent variable is explicitly present in the formulation unlike the one de-
scribed in [10]. Most of these schemes were developed for equations of the convection-diffusion type and were well
equipped to simulate incompressible viscous flows governed by the Navier-Stokes (N-S) equations as well. However major-
ity of these HOC schemes developed so far are mostly on uniform grids [4,9,11,45,49]. The very few attempts that have been
made to develop HOC scheme on nonuniform grids for the convection-diffusion equations [41,45-47] use the conventional
transformation technique from the physical plane to the computational plane.

In a departure from this practice, Kalita et al. [5] developed an HOC scheme on rectangular nonuniform grids for the stea-
dy 2D convection-diffusion equation with variable coefficients without any transformation. It was based on the Taylor series
expansion of a continuous function at a particular point for two different step lengths and approximation of the derivatives
appearing in the 2D convection-diffusion equation on a nonuniform stencil. The original PDE was then used again to replace
the derivative terms appearing in the finite difference approximations, resulting in a higher order scheme on a compact sten-
cil of nine points.

In this paper, we extend the philosophy outlined in reference [5] to develop a transient HOC scheme for streamfunction-
vorticity (y — ) formulation of the 2D N-S equations on cylindrical polar coordinates. The basic difference between the pro-
posed scheme and the earlier HOC schemes is that the present scheme is able to handle variable coefficients of the second
order derivatives while the previous schemes could deal with unit diffusion coefficients only. This perhaps is the reason that
majority of the earlier endeavors to develop HOC schemes on cylindrical polar coordinates were confined to the Poisson
equation on uniform grids [48-52] only.

To validate the proposed scheme, we apply it to this well known problem of unsteady flow past an impulsively
started circular cylinder for a wide range of Re ranging from 10 to 9500. In the process, we have also developed
transient HOC approximation for the Neumann boundary condition for vorticity. For low and moderate Re, we com-
pute the flow until steady-state or till the flow becomes periodic. For the higher range of Re, we compute the solu-
tion in the initial stages of the flow. For all the Reynolds numbers, detailed discussion on the flow structure and
comparison with experimental and numerical results are provided. In each case, our solution agrees very well, both
qualitatively and quantitatively with established numerical and experimental results, confirming the efficiency of the
proposed scheme. The robustness of the scheme however is better realized when it captures the periodic nature of
the flow for Re = 60 and 200 characterized by vortex shedding represented by the von Kirman street and also by the
fact that it very accurately captures the so called secondary phenomena for moderate Re, and o and S-phenomena
for higher Re.

The paper has been arranged in six sections. Section 2 deals with the problem and the governing equations, Section 3 with
the mathematical formulation and discretization, Section 4 with the solution of the algebraic system of equations, Section 5
with the numerical results and discussion and finally, Section 6 summarizes the whole work.
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2. The problem and the governing equations

We consider the unsteady, incompressible flow over an infinitely long cylinder of circular cross-section of radius Ry (see
the schematic diagram in Fig. 1). The flow is governed by the incompressible N-S equations. In non-dimensional form, the
Y — w formulation of the N-S equations in cylindrical polar coordinates (r, 0) are given by,
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Here y is the streamfunction, w the vorticity, u, v, respectively are the radial and tangential velocity components, t is the time

and Re = U—‘? is the Reynolds number with U being the characteristic velocity, D the diameter of the cylinder and v the kine-

matic viscosity. The velocities u and » in terms of  are given by

1oy oy
u=-2n andvf—ﬁ, (3)
and the vorticity  is given by
1[0 ou
-5 @)

We assume the cylinder to be of unit radius placed in an infinite domain. At the far-field, a potential flow is assumed [36]
with uniform free-stream velocity U,, = 1. Thus

R R\ ..

(U (1, 0), U (1,0)) = <UOO <1 - r—;’) cos0, U, (1 + r—;’) sin 9). (5)
The initial and the boundary conditions are as follows:

o(r,0,0)=0,Rg <1 <oco, 0<6<2m, (6)

(u(r,0,t), v(r,0,t)) = (U (1,0), Vs (1,0)),r — 00, 0<0<2m. (7)
On the surface of the cylinder r = Ry,0 < 0 < 21

(u(r,0,t), v(r,0,t)) = (0,0). (8)
The boundary conditions for y on the surface of the cylinder can be derived from those of the velocities in (8) as

W(r,0) =0, %(r, ) =0, 0<6<L2m 9)

Fig. 1. Schematic diagram of the flow around a circular cylinder with boundary conditions.
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At the far field where r — oo,

2 2
Y(r,0) = (rRrO) sin6, %(r, 0) = (1 +}:§> sinf, 0<0<2m. (10)

3. Discretization and mathematical formulation
3.1. The numerical scheme

As the title of our paper suggests, we are interested in computing the incompressible viscous flows past a circular cylinder
where the computational and physical planes are the same. We construct a nonuniform polar mesh (see a typical stencil at
the n or (n+ 1)th time level in Fig. 2) in the annular region Q = [Ry,R.;] x [0,27] by the points (r;, §;) which are not neces-
sarily equally spaced. At a typical (i,j)th node, the forward and backward step lengths in the r-direction are given by
Ty = (riyn — i), 1y = (ri — riz1), Tespectively. Similarly in the 0-direction, 0y = (0;.1 — 0;), 0, = (0; — 6;_1). Assuming the stream-
function  to be smooth, the finite difference approximations of first and second derivatives appearing in (2) at the (i,j)th
node are given [5] as follows:

ol 1 o nndyl 1 Yy 7+

ar y = Srii; *j(rf - rb)‘srl//i,j 6 o ' - ﬂrf"b(rf - rb)iar“ ' +0 P, ) (11)
Pyl o 1 Pyl 1, gyl 1 2 2 Y 7t

o) =¥~ 3 N5 U_ﬁ<rf SR _rf”’> ord U_@(rf_r")(rf )5S U+O T (12)

The derivatives with respect to 6 can be obtained in a similar way; here, é;, 5, and 53, 53 are the first and second order non-
uniform central difference operators in the r and ¢-directions, respectively. The procedure for approximating the derivatives
of w is the same. In view of the above equations, Eqs. (1) and (2) may be approximated at the (i,j)th point as

o 1. . . . ow
4 30 (0~ 0500y~ )3} — s 3 - 05065 — 0o} | - (e, = e (13)
i i
1 1
b gt (o= 0507 ol iy — (1) = o (14)
respectively, where,
1 Re v;;
clzrfifReu,-J-, d, = - Y
Pw Pw o*w o*w

(Tl)ij =Hq; 7ar3 +K117803 +H1278r4 + K3 7894 + (Tf 7Tb)(1")% +r§)(/)”
B4+ 0 +0;
_ 2 2 f b “f b
+ (0 0b>(0f+0b)¢u+0<rf+rb,0f+0b 7

(15)

= (n+1)—th time level

(i1, j+ 1>
(=1, )

Z(i+1,j-1)
I I,
— > n-th time level

Fig. 2. The unsteady HOC stencil on nonuniform polar grid.
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(T2)ij = Ha1 5 +Ha

(16)
with @41, 12, d21, o, being the leading truncation error terms and

1 1
Hy = 16{22(rf —1p) +crerp}, Hpp= 34 {12 (ré + 12— rfrb) + crpry(ry — rb)},
K= {E (0 — 0p) — defob}, K = 24{ (02 - efe,,) — doy0, (0 — eb)},

1 ¢l 1 Ty
Hy :g{z(rf —Tp) +fr_1-}’ Hy = 24 {Z(rf 15— rﬂb) +fr—l_(rf - rb)},

1 1
1<21_372( —0y), Kp = 122(9f+0b efe,,).

To obtain a higher order spatial compact finite difference approximation (at least up to third order spatial accuracy on non-
uniform grids) for (1) and (2), the third and fourth order derivatives appearing in 7; and 1, are compactly approximated [5]
to at least second order spatial accuracy. In order to accomplish this, the original equations (1) and (2) are treated as auxiliary
relations that can be differentiated to obtain higher order derivatives. For example, successive differentiation of (1) with re-
spect to r and 0 and rearranging terms yield

20 2 3 _ 2
@:<Reu—l>a (Reur+1>aw+@_aw_l8w+(Revrr Rey>8—w+38—w+Re3<a—w>, 17)

or3 or? or r orod 1% grop? r2 00 13 9p* or \ ot
o 82 L0 g o o o R Po 1 & L1.00 g > w
ot~ oz TP ar T orae T toro® T T 0r2a0 17 ar2a? 0 "% 07
1 dw & (0w
+ (Reu )Rey (W) +Reﬁ<ﬁ>’ (18)
where
1\° 1 1 1 2
T, = <Reu — ?) +2 (Reur + r7>’ T, = <Reu — F) (Reur + ﬁ) + (Reurr — r—3>,
1\ Rev Rev,r — Rev 4 7\ 1
T3 = (Reu—F)T-i-Z(T), T4 =5 (Reu—;)r—2
_ 2 _
Ts = (Reu 1 Rev.r — Rev L Rev,r* — 2Rev,r + 2Rev 7
r r2 r
N2 6
Ts = <Reu —F) P
and
Pw EO) dw Pw Pw N0 d (0w
= Revr=—— + Rev,r — + (Reur? — r? Reuyr? —— + Rer?
T o0 o (Reur’ — 1) 5s5 = pragp T Retur” i + Rer’ 75 (ar)
oo s, dw ;3 P
W: {(Revr) +2Rev,,r}W+ (Re“vyor +Rev,,,,r + {Rewr( Reur — 1) + 2Reu,yr? }a 20 — Rev 51260
o Pw W d (9w & (0w
2 2 2 3 2 2.3 2
—r Ry + (Reur” —r) Py + (Re“uyvr® + Reugyr )W +Re“vr 20 (E) + Rer Py (E)
Expressions for the higher order spatial derivatives of « can be found in a similar way. The approximations for the mixed
3 3 4
derivatives such as oo I and g can be found out by the successive applications of the approximations for the

ara0’ aroe* arzae?
first and second derivatives given in (11) and (12). Note that all the derivatives appearing in 7; and 7, being approximated
+g
are of the form % where p, q < 2. Therefore the central difference approximations of these derivatives do not extend be-
yond one mesh length away from the point about which the finite differences are taken. As a result of this, the HOC com-
putational stencil is always restricted to a maximum of nine points as shown in Fig. 2. Once all the approximations are
substituted for the derivatives, the spatially HOC approximations of Egs. (1) and (2) can be written as

[Al,‘_jé? +A2,‘_j55 +A3,‘_j5r +A4i_j50 +A5,‘J‘5r(3() + A6i‘j5r55 + A7i_j53(3() + AS,\@%(S%] ijj = F,‘J‘ (19)
and

[B1;07 + B2;;8; + B3;;0; + B4;;j0:5y + B5;j6:0; + B6;;07 8y + B7;075; ;= Gij, (20)
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respectively, where the coefficients are given by

1
Alij =1-0.5¢; (rf — rb) — <H12C% — C]H]]) —2H1, <Re(ur)m- +r—2),

1

rf—T 1 2H
31,4‘,2177“2 0 4 (1 — Hy) 5~ =57
27

T ;

1 2 6H
AZiJ = ﬁ —+ 05d1 (Of — Qb) — 173 (H]] — H]zcl) + TTlZ — REZ),‘JT,'(KH + Rev,-jr,-l(lz) — 2K1zR€(Z/())i_jT,',
1 2 6H
B2;j = e (riHa1 — HZZ)EJF ?;227
1 2
A31'J' =C1 — (H11 — C]H]z) Re(ur)u +r—2 — H12 Re(urr)u — I’_3
i i
— Re(uy);;17 (K11 + Rew;jriK12) — Ky2Re(vgo);;r
1 2Hxn

1
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1 i i

Re
Adij = —di — (Hi1 — ciH) ()11 — Z/U) H]Z((yrr)u i = 2(vr)ri + 21/1,/)
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Re
3
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Re
ASU‘ = 7(1] (H]] - C]H]z) - 2H12((1/,)ijri - Uif)rT+ C]T,»Z(K]] +Rev,-jr,-1(12) 2K12R€’(1/0)

i

IJ'

B5;j = (riHy1 —H») = -

1 4H
3 — e + 1Ko,

l

1 4H
A6i,/' = (Hl] — ClH”)r_z_r—au'*‘ClKuT?,

i i

BGI‘J‘ = I‘?Kﬂ,
A7;j = —diHy + 12 (K11 + RevyjriKyz),
B71J = I-:‘ZZ + T21(227
1
H
A8 = r]zz + Kypor?,

dw

Fij = [Re + Re(Hn — C1H12) + H12R€52 +Rer (Kl] + RCU,JT1K12)5() + K]zReT (52:| ot

1. .
Gl] = — |:1 + (riH21 — sz);ér +H22()? +I<2]Ti2(30 +I<22r12(35 (UU
1

The details of all the spatial finite difference operators appearing in Egs. (19) and (20) can be found in the appendix.

Note that the expression F; in Eq. (19) has a temporal derivative term e We use forward difference to discretize this

term and then a weighted average parameter value of 1 for this derivative [4,6,47] to arrive at a Crank-Nicolson type of
approximation for Eq. (19)

[A114;67 + A124;6] + A1340, + Al4ij6) + A15;j0:0) + A160,0; + A17;;075, + A18,;06257 |l

= [A21;;07 + A22;;0; + A23;;0, + A24;;0, + A25;;0:0, + A26;;0,5, + A27;;075, + A28; jafof,} oll, (21)

where,

Al11;; = (HizRe — 0.5AtA1;;), A21;; = (Hi,Re + 0.5AtA1;)),

A12;; = (r’KyoRe — 0.5AtA2;5), A22;; = (r’Ki2Re + 0.5AtA2;),

A13;; = (Re(Hy1 — c1H12) — 0.5AtA3;5), A23;j = (Re(Hy1 — c1Hi2) + 0.5AtA3;),

Al4;j = (r7Re(Ky1 + riRew;jK12) — 0.5AtA4;)),

A24;; = (r7Re(Kyq + riRev;jK12) + 0.5AtA4;)),

A15;; = —0.5AtA5;5, A25;; = 0.5AtA5;j,

A16;; = —0.5AtA6;;, A26;; = 0.5AtAG,

Al17;; = —0.5AtA7;5, A27;; = 0.5AtA7;,

A18;; = —0.5AtA8;j, A28;; = 0.5AtAS;;.

(rf
(2
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Thus (21) is the HOC approximation of the vorticity equation (1) which is at least third order accurate in space and second
order accurate in time; likewise, (20) is the approximation of the streamfunction equation (2). It may be noted that on a uni-
form grid the spatial accuracy of both (20) and (21) becomes four.

3.2. Approximation of the boundary conditions
The numerical implementation of the boundary conditions for u,  and  are straightforward. The vorticity w at the far

field is zero. It may be noted that for computational purpose we fix r as R, at the far field. At the solid boundary, making use
of Eqs. (2) and (9), for all 0 at r = Ry, we have

Y
w=— o2 (22)
thereat. We proceed to obtain a compact approximation of the vorticity on the solid boundary as follows:
Employing a Taylor series expansion, we get
_ o _ R A A A
0= orl,, = it 2 9r Teom| tTaaom +0(7) @3)
0j 0j 0j
Using (22) in (23), we get the fourth order accurate expression
2 3 2
P SVRN 1100 B CIC Y A 4
0= 0k, ( 2 "eor Ao )| " o(rf) (24)
Making use of the fact that on the solid wall u =0, v = 0, Eq. (1) yields,
2 2
‘970): eaﬂ,laﬂ,lz‘?i? (25)
or? ot 1o or 13 90
Using (25) in (24) and after some simplifications we get,
3 2 3 3 2
= o Ty 4 (1)o@ _GRedw 1 2o
0= —0nhoj =5 Pos ¥ <24r0 6)orly 24 ot| — 24r o (26)

Using forward difference for the temporal derivative and second order one-sided difference for the derivatives along r-direc-
tion, we finally get

o _28At[frRe 1 ([ N[ (-r)f-rp \ o 1 1\,
% " riRe ||24At 2 \24ry 6 )\ry(r—ro)(ra—11)) 24r3A0\0; 6 0J
13 13 B 2\ [((r;— )0t — rRat
+ 2f ng*l zf ngﬂ + L1 r °) YL 2 (27)
24120,A0 24r30;A0 24r, 6 1p(ry —10)(r2 — 1)

3.3. Calculation of drag and lift coefficients
In the case of viscous flows for bluff bodies immersed in fluids, the forces that are being exerted on the body come from
surface pressure distribution and surface friction. The surface pressure distribution can be calculated from the tangential

momentum equation at the surface of the body. To calculate the lift (C;) and drag coefficients (Cp), we use the following for-
mulas [39,44], respectively,

1 /2" | /0w
Clzﬁ/o {<5>RO —cuRO}cosf)d(), (28)

1 (7| /0w )
Co = /0 {(m)R a)Ro}smedG. (29)

The integral over 0 along the cylinder is numerically computed using Trapezoidal rule.
3.4. The Grid used

We employ a uniform grid spacing along the 0-direction and nonuniform grid spacing in the r-direction with clustering
around the surface of the cylinder using the following functions:
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2n ATt
0j=—— and r;=exp (—
max lmax
Here the parameter 1 determines the outer radius of the computational domain. The continuity conditions at 0 = 0 and
0 = 27 are taken as the boundary conditions along those two lines. A typical computational grid of size 101 x 101 is shown
in Fig. 3.
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Fig. 4. Steady-state streamlines (left) and vorticity contours (right) for Re = 10,20 and 40 for the motion past a circular cylinder problem.
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Fig. 5. Geometrical parameters of the closed wake for the motion past a circular cylinder problem.
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Fig. 9. Comparison of vorticities on the cylinder surface for low Res with the results of references [33] and [34] for the motion past a circular cylinder
problem.

Table 1
Effect of grid size on wake lengths and separation angles.
Re =20 Re = 40
Grid 75 101 151 75 101 151
05 42,9248 432756 434224 51.3012 51.5342 51.7018

L 1.8331 1.8276 1.8226 4.4135 4.3988 4.3921
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4. Solution of algebraic systems

We now discuss the solution of algebraic systems associated with the newly proposed finite difference approximations.
The system of equations arising out of (20) and (21) can be written as

1 1

1 1
Z ik o Wik, jrky = Z Z Elivky ko 8icky ko » (30)

ki=1 ky=—1 ki=—1 ky=1

and

1 1 1 1
X i n+1 _ £9. ) n
Z Z N2ikk, gk, Dtk ok, = Z Z C2isky gk, Wik ks (31)

ki=1 ky=1 ki=1 ky=—1

where #1,¢1 and 52, £2’s are functions of the coefficients appearing in the corresponding equations (2) and (1), their deriv-
atives and the step lengths ry, 15, 65, 6, and At. In matrix form, the system of algebraic equations given by (30) or (31) can now
be written as

Ad =B, (32)

where the coefficient matrix A is an asymmetric sparse matrix with each row containing at most nine non-zero entries. ¢ is
the unknown vector  or w and B is the known (source) term. For a grid of size m x n,A is of size mn x mn, and @ and B are
mn-component vectors.

The next step now is to solve Eq. (32); as the coefficient matrix A is not generally diagonally dominant, conventional solv-
ers such as Gauss-Seidel cannot be used. On uniform grids in Cartesian coordinates, some of the associated matrices are sym-
metric and positive definite, which allows algorithms like conjugate-gradient (CG) [1] to be used. As nonuniform grid and
variable coefficients of the derivatives appearing in Egs. (1) and (2) invariably lead to non-symmetric matrices, in order
to solve these systems, we use the hybrid biconjugate gradient stabilized method BiCGStab(2) [1] without preconditioning.

It may be noted that for the coupled nonlinear PDEs (such as the y — @ form of the N-S equations), an iterative solution
procedure must be adopted to solve the matrix equation of the type (32) at each time step. Both the vorticity (31) and stream
function (30) equations are solved using BiCGStab(2) which may be termed inner iterations. We utilize a relaxation param-
eter y for the inner iteration cycles for both w and y. For larger values of Reynolds number, we needed smaller values of 7.

All of our computations were carried out on a Pentium 4 based PC with 512 MB RAM. For the inner iterations, the com-
putations were stopped when the norm of the residual vector r = B — A® (¢ being either w or ) arising out of equation (32)
fell below 0.5 x 107°. For the cases where steady-state solution is obtained with a time-marching strategy, the steady-state
is assumed to reach when the maximum w-error between two successive time steps is smaller than 0.5 x 1077,

5. Results and discussion

We have used the proposed HOC scheme to visualize and analyze the flow patterns for Reynolds numbers ranging from
10 to 9500. Different grid sizes and outflow boundaries are used to capture the gradually increasing complex flow patterns.
The flow regime has been divided into four parts depending upon the almost identical flow characteristics observed within
each range. In the first part we discuss about the flow structures for 10 < Re < 40; available experimental and the numerical
results [29-31,33,34,41,43] show that steady-state is possible for this range. In the second part we discuss about the flow

Table 2
Effect of far field boundary on the wake lengths and separation angles.

Re =20 Re = 40
R 35.03 60.14 75.17 35.03 60.14 75.17
05 43.6248 43.2156 42.9248 51.9612 51.6342 51.3012
L 1.8177 1.8253 1.8331 4.4044 4.4101 44135

Table 3
Comparison of the wake lengths, separation angles and drag coefficients for different Reynolds numbers.
Re Ref. [33] Ref. [32] Ref. [34] Ref. [37] Ref. [41] Present
L 20 1.88 - 1.82 1.842 1.77 1.8331
40 4.69 - 4.48 4.49 421 4.4135
05 20 43.7 - 42.9 42.96 41.3277 42.9248
40 53.8 - 51.5 52.84 51.0249 51.3012
Cp 20 2.045 2.05 2.001 2.152 2.0597 2.0193

40 1.522 1.57 1.498 1.499 1.5308 1.5145
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structures for Re = 60 and 200; here the wake behind the cylinder becomes unstable. Oscillations in the wake grow in ampli-
tude and finally forms a trail of vortices known as von Karman vortex street. For the next higher Reynolds numbers being
discussed here, we consider only the early stage of the flow in the laminar regime. The first of these are Re = 300 and

Fig. 10. Streamlines (left) and vorticity contours (right) at Re = 60 for flow past a circular cylinder at: (a) t = 20, (b) 70, (c) 329, (d) 363, (e) 428 and (f) 468.
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550; for these Re, the flow properties are unsteady; secondary vortices develop at the initial stages, but do not split up fur-
ther. The flow is characterized by the secondary phenomena: (i) bulge phenomenon and (ii) isolated secondary eddy. In the
last part, we discuss the range 1000 < Re < 9500 having the most complicated flow properties associated with the so called
o- and p-phenomena [31,41,43].

5.1. Flows for 10 < Re < 40

As stated earlier, for the flow past an impulsively started circular cylinder, steady-state is possible up to Re = 40. So in this
section, we compare our time-marching steady-state results with existing numerical and experimental results [30,32-
35,37,41,42,44] for Reynolds numbers Re = 10, 20, and 40 in Figs. 4-9 and Tables 1-3.

In Fig. 4, we exhibit the streamlines and vorticity contours from Re = 10 to 40. In all the cases, two symmetrical, station-
ary circulating eddies develop behind the cylinder. With increase in Re values, one can see the increase in the sizes of the
vortices.
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Fig. 11. For Re = 60, (a) time history of the drag and lift coefficients, (b) streamline and (b) vorticity contours (corresponding to the peak value of the lift
coefficient) for the temporally periodic solution.
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We also compute the wake length L: the distance between the rear most point A of the cylinder to the end B of the wake
(Fig. 5), and the angle of separation 0;, which is the angle between the x-axis and the line joining the center of the cylinder
and the point of separation S on the cylinder (Fig. 5). These parameters are then compared in Table 1 in order to verify the
grid-independence; the grid sizes range from 75 x 75 to 151 x 151 (R,, = 75.17). Table 2 shows the variation of the same
parameters to check the dependence of the computed solution on the assumed far-field where R, s range from 35.03 to
75.17. Here the grid size has been fixed at 75 x 75. From these tables, it is clear that a grid of size 101 x 101 and a far-field
given by R, = 75 are enough for accurate resolution of the flow. In Table 3, we present our computed L, 6; and the drag coef-
ficient Cp along with those obtained by [32-34,37,41]. In Figs. 6 and 7, we compare the evolution of the angles of separation
and wake lengths at the earlier stages of the flow for 10 < Re < 40 with the results of [30]; Fig. 8 shows the time evolution of
the computed drag coefficients in the range 10 < Re < 40 along with those of [44]. We also compare the vorticity values
along the surface of the cylinder for the range of Reynolds numbers considered here with those of references [33,34] in
Fig. 9. In all the cases, we obtain excellent comparisons with the established numerical and experimental results, both qual-
itatively and quantitatively.

5.2. Flows for Re = 60 and 200

The flow around a impulsively started circular cylinder for Re = 60 and 200 eventually becomes periodic and is known to
develop vortex shedding represented by the von Karman vortex street. The basic difference between the flow patterns of this
Re range with the previous one is that, the velocities increase with time more rapidly in the recirculating zone and the sec-
ondary vortices develop in this region. In these Re values, flow becomes unsteady. Careful flow visualization reveals that the
flow in the early stage of development in the laminar wake region is still two-dimensional and symmetric about the axis
0 = 0. Therefore, quite a few number of studies [33-36,43] have used only the upper half circular annular region to compute
the flow. However use of the complete annular region for computational purpose enabled us to capture the unsteady peri-
odic nature of the flow for Re = 60 and 200 as well. For these two Reynolds numbers, we have used a 181 x 181 grid and R,,
is taken as around 35 times of the cylinder radius.

In Fig. 10, we show the evolution of streamlines and vorticity contours for Re = 60 from t = 20 having a symmetric pat-
tern and leading to the onset of asymmetry in the streamlines at a later time around t = 329. The asymmetry in vorticity

Fig. 13. The streamfunction contours depicting the wake behind three successive instants of time over one vortex shedding period for Re = 200. (a) t = to,
(b)yt=to+Tand (c)t=to+T.
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details are presented for the next Reynolds number 200, where we exhibit our numerical results for Re = 200 from an early
to a periodic stage in Figs. 12-15. In Fig. 12, solution profiles are presented for various values of t till the onset of periodicity.
As seen from the figure, a symmetric flow was observed at the beginning (Fig. 12(a)), but the flow became unstable later on,
and finally the flow lost its symmetry (Fig. 12(b)-(e)). Eventually, the flow settled into a periodic nature (Fig. 12(n)). We
present the temporal evolution of streamlines and vorticity over one complete vortex shedding cycle of duration T in Figs.
13 and 14, respectively. The evolution of an impressive von Karman vortex street, which is a regular feature for the Reynolds
numbers considered here, is clearly seen in these figures.

From Fig. 13, one can see the formation of eddies just behind the cylinder; these eddies are then washed away into the
wake region. Two eddies are shed just behind the cylinder within each period (see also Fig. 12(n) and Fig. 13(a)). Fig. 13(a)
and (b) are half a vortex shedding cycle apart, and middle Fig. 13(b) is a mirror image of Fig. 13(a) and (c). The corresponding
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Fig. 16. Radial velocity along the axis of flow for the motion past a circular cylinder for Re = 200 at the earlier stages of the flow and comparison with
reference [31].
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Table 4

Comparison of Strouhal num