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In this paper, we present a higher order compact scheme for the unsteady two-dimensional
(2D) Navier–Stokes equations on nonuniform polar grids specifically designed for the
incompressible viscous flows past a circular cylinder. The scheme is second order accurate
in time and at least third order accurate in space. The scheme very efficiently computes
both unsteady and time-marching steady-state flow for a wide range of Reynolds numbers
ðReÞ ranging from 10 to 9500 for the impulsively started cylinder. The robustness of the
scheme is highlighted when it accurately captures the vortex shedding for moderate Re
represented by the von Kármán street and the so called a and b-phenomena for higher
Re. Comparisons are made with established numerical and experimental results and excel-
lent agreement is found in all the cases, both qualitatively and quantitatively.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The classical problem of the evolution of incompressible viscous flow induced by an impulsively started circular cylinder
is one of the most widely studied problems in computational fluid dynamics. It has continued to generate tremendous inter-
est amongst researchers over the last century mainly because of the fact that it displays almost all the fluid mechanical phe-
nomena for incompressible viscous flows in the simplest of geometric settings. However, the flow structure is very complex,
especially for large Reynolds numbers, thus making the computation of the flow even more challenging and intriguing. Be-
cause of its popularity, a plethora of experimental, theoretical and numerical results are readily available for this problem in
the literature.

The theoretical studies related to this problem can be dated back to the work of Blasius [17] in 1908 which was generally
based on the boundary layer theory. This was further persisted by Goldstein et al. [18], Schuh [19], Wundt [20] and Watson
[21] all of whom considered the limiting case of infinite Reynolds number. Later on, Wang [22] and Collins and Dennis [23]
extended this work for finite but higher Reynolds numbers. In all the cases, results could be found only for short span of time
in the early stage of the flow after the start.
. All rights reserved.
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Besides these theoretical works, for a better understanding of the phenomena of the unsteady wake formation, several
experimentalists [3,29–32,53–55] performed a series of tests based on the visualization the flow for various Reynolds
numbers. These experimental works have been of immense help to the computational fluid dynamics community; new
computational methods are being developed and consequently improved upon to solve this complex flow problem
[24–26,28,33–44]. We now have enough experimental data that can be compared with the outcome of the numerical results,
paving the way for computing complicated and extended flow phenomena for Reynolds numbers hitherto unexplored by
experimentalists.

Over the years, the second order central difference schemes, because of their easy and straight-forwardness in appli-
cation, have for quite some time been a popular choice for discrete approximation of partial differential equations. Such
methods are known to yield quite good results on reasonable meshes if the solution is well behaved. But for certain prob-
lems, such as the convection dominated flows, the solution may exhibit oscillatory behaviour if the mesh is not sufficiently
refined. However, mesh refinement invariably brings in additional points into the system resulting in an increased system
size and consequently more memory and CPU time are required to solve such problems on a computer. Again discretiza-
tion on a non-compact stencil (generally associated with higher-order accurate methods) increases the band-width of the
coefficient matrix arising out of the discretization process. Both mesh refinement and increased matrix band-width ulti-
mately result in increased arithmetic operations. Thus neither a lower-order accurate method on a fine mesh nor a higher-
order accurate one on a non-compact stencil could be computationally cost-effective. Therefore, of late, the Higher Order
Compact (HOC) finite difference schemes for the computation of incompressible viscous flows are gradually gaining pop-
ularity because of their high accuracy and advantages associated with compact difference stencils. A compact finite differ-
ence scheme is one which utilizes grid points located only directly adjacent to the node about which the differences are
taken. In addition, if the scheme has an order of accuracy greater than two, it is termed a higher-order compact method.
There exist several mechanisms through which finite difference schemes can achieve higher-order compactness. One of
them is based on Padé [2] approximation, which is an implicit relation between the derivatives and functions at adjacent
nodal points. These schemes [10,12–16] include information not only from the adjacent points to the node about which
the differences are taken, but also includes information from nodal points located at distance two or three steps away
from that node.

Another class of HOC schemes [4–9,11,45,47,49], which, in recent years have generated renewed interest amongst the
computational fluid dynamics community are the ones which utilize grid points located only directly adjacent to the node
about which the differences are taken and the dependent variable is explicitly present in the formulation unlike the one de-
scribed in [10]. Most of these schemes were developed for equations of the convection–diffusion type and were well
equipped to simulate incompressible viscous flows governed by the Navier–Stokes (N–S) equations as well. However major-
ity of these HOC schemes developed so far are mostly on uniform grids [4,9,11,45,49]. The very few attempts that have been
made to develop HOC scheme on nonuniform grids for the convection–diffusion equations [41,45–47] use the conventional
transformation technique from the physical plane to the computational plane.

In a departure from this practice, Kalita et al. [5] developed an HOC scheme on rectangular nonuniform grids for the stea-
dy 2D convection–diffusion equation with variable coefficients without any transformation. It was based on the Taylor series
expansion of a continuous function at a particular point for two different step lengths and approximation of the derivatives
appearing in the 2D convection–diffusion equation on a nonuniform stencil. The original PDE was then used again to replace
the derivative terms appearing in the finite difference approximations, resulting in a higher order scheme on a compact sten-
cil of nine points.

In this paper, we extend the philosophy outlined in reference [5] to develop a transient HOC scheme for streamfunction-
vorticity ðw�xÞ formulation of the 2D N–S equations on cylindrical polar coordinates. The basic difference between the pro-
posed scheme and the earlier HOC schemes is that the present scheme is able to handle variable coefficients of the second
order derivatives while the previous schemes could deal with unit diffusion coefficients only. This perhaps is the reason that
majority of the earlier endeavors to develop HOC schemes on cylindrical polar coordinates were confined to the Poisson
equation on uniform grids [48–52] only.

To validate the proposed scheme, we apply it to this well known problem of unsteady flow past an impulsively
started circular cylinder for a wide range of Re ranging from 10 to 9500. In the process, we have also developed
transient HOC approximation for the Neumann boundary condition for vorticity. For low and moderate Re, we com-
pute the flow until steady-state or till the flow becomes periodic. For the higher range of Re, we compute the solu-
tion in the initial stages of the flow. For all the Reynolds numbers, detailed discussion on the flow structure and
comparison with experimental and numerical results are provided. In each case, our solution agrees very well, both
qualitatively and quantitatively with established numerical and experimental results, confirming the efficiency of the
proposed scheme. The robustness of the scheme however is better realized when it captures the periodic nature of
the flow for Re ¼ 60 and 200 characterized by vortex shedding represented by the von Kármán street and also by the
fact that it very accurately captures the so called secondary phenomena for moderate Re, and a and b-phenomena
for higher Re.

The paper has been arranged in six sections. Section 2 deals with the problem and the governing equations, Section 3 with
the mathematical formulation and discretization, Section 4 with the solution of the algebraic system of equations, Section 5
with the numerical results and discussion and finally, Section 6 summarizes the whole work.
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2. The problem and the governing equations

We consider the unsteady, incompressible flow over an infinitely long cylinder of circular cross-section of radius R0 (see
the schematic diagram in Fig. 1). The flow is governed by the incompressible N–S equations. In non-dimensional form, the
w�x formulation of the N–S equations in cylindrical polar coordinates ðr; hÞ are given by,
@2x
@r2 þ

1
r
@x
@r
þ 1

r2

@2x
@h2 ¼ Re u

@x
@r
þ v

r
@x
@h
þ @x
@t

� �
; ð1Þ

@2w
@r2 þ

1
r
@w
@r
þ 1

r2

@2w

@h2 ¼ �x: ð2Þ
Here w is the streamfunction, x the vorticity, u, v, respectively are the radial and tangential velocity components, t is the time

and Re ¼ UD
m

is the Reynolds number with U being the characteristic velocity, D the diameter of the cylinder and m the kine-

matic viscosity. The velocities u and v in terms of w are given by
u ¼ 1
r
@w
@h

and v ¼ � @w
@r
; ð3Þ
and the vorticity x is given by
x ¼ 1
r

@

@r
ðvrÞ � @u

@h

� �
: ð4Þ
We assume the cylinder to be of unit radius placed in an infinite domain. At the far-field, a potential flow is assumed [36]
with uniform free-stream velocity U1 ¼ 1. Thus
ðu1ðr; hÞ;v1ðr; hÞÞ ¼ U1 1� R2
0

r2

 !
cos h;�U1 1þ R2

0

r2

 !
sin h

 !
: ð5Þ
The initial and the boundary conditions are as follows:
xðr; h;0Þ ¼ 0;R0 6 r <1; 0 6 h 6 2p; ð6Þ
ðuðr; h; tÞ; vðr; h; tÞÞ ¼ ðu1ðr; hÞ;v1ðr; hÞÞ; r !1; 0 6 h 6 2p: ð7Þ
On the surface of the cylinder r ¼ R0;0 6 h 6 2p
ðuðr; h; tÞ;vðr; h; tÞÞ ¼ ð0;0Þ: ð8Þ
The boundary conditions for w on the surface of the cylinder can be derived from those of the velocities in (8) as
wðr; hÞ ¼ 0;
@w
@r
ðr; hÞ ¼ 0; 0 6 h 6 2p: ð9Þ
U U

U U

U U

RR0

θ

r

u

v

Fig. 1. Schematic diagram of the flow around a circular cylinder with boundary conditions.
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At the far field where r !1,
wðr; hÞ ¼ r � R2
0

r

 !
sin h;

@w
@r
ðr; hÞ ¼ 1þ R2

0

r2

 !
sin h; 0 6 h 6 2p: ð10Þ
3. Discretization and mathematical formulation

3.1. The numerical scheme

As the title of our paper suggests, we are interested in computing the incompressible viscous flows past a circular cylinder
where the computational and physical planes are the same. We construct a nonuniform polar mesh (see a typical stencil at
the n or ðnþ 1Þth time level in Fig. 2) in the annular region X ¼ ½R0;R1� � ½0;2p� by the points ðri; hjÞ which are not neces-
sarily equally spaced. At a typical ði; jÞth node, the forward and backward step lengths in the r-direction are given by
rf ¼ ðriþ1 � riÞ; rb ¼ ðri � ri�1Þ, respectively. Similarly in the h-direction, hf ¼ ðhjþ1 � hjÞ; hb ¼ ðhj � hj�1Þ. Assuming the stream-
function w to be smooth, the finite difference approximations of first and second derivatives appearing in (2) at the ði; jÞth
node are given [5] as follows:
@w
@r

����
i;j

¼ drwi;j �
1
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The derivatives with respect to h can be obtained in a similar way; here, dr ; dh and d2
r ; d

2
h are the first and second order non-

uniform central difference operators in the r and h-directions, respectively. The procedure for approximating the derivatives
of x is the same. In view of the above equations, Eqs. (1) and (2) may be approximated at the ði; jÞth point as
d2
r þ

1
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respectively, where,
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1
ri
� Re ui;j; d1 ¼

Re v i;j

ri
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Fig. 2. The unsteady HOC stencil on nonuniform polar grid.
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ðs2Þi;j ¼ H21
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with /11;/12;/21;/22 being the leading truncation error terms and
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1
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To obtain a higher order spatial compact finite difference approximation (at least up to third order spatial accuracy on non-
uniform grids) for (1) and (2), the third and fourth order derivatives appearing in s1 and s2 are compactly approximated [5]
to at least second order spatial accuracy. In order to accomplish this, the original equations (1) and (2) are treated as auxiliary
relations that can be differentiated to obtain higher order derivatives. For example, successive differentiation of (1) with re-
spect to r and h and rearranging terms yield
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where,
T1 ¼ Reu� 1
r

� �2

þ 2 Reur þ
1
r2

� �
; T2 ¼ Reu� 1

r

� �
Reur þ

1
r2

� �
þ Reurr �

2
r3

� �
;

T3 ¼ Reu� 1
r

� �
Rev

r
þ 2

Rev rr � Rev
r2

� �
; T4 ¼

4
r3 � Reu� 1

r

� �
1
r2

T5 ¼ Reu� 1
r

� �
Rev rr � Rev

r2

� �
þ Rev rrr2 � 2Rev rr þ 2Rev

r3

� �
;

T6 ¼ Reu� 1
r

� �
2
r3 �

6
r4 :
and
@3x
@h3 ¼ Revr

@2x
@h2 þ Revhr

@x
@h
þ ðReur2 � rÞ @

2x
@r@h

� r2 @3x
@r2@h

þ Reuhr2 @x
@r
þ Rer2 @

@h
@x
@t

� �
;

@4x
@h4 ¼ fðRevrÞ2 þ 2Revhrg @

2x
@h2 þ ðRe2vhvr2 þ RevhhrÞ @x

@h
þ fRevrðReur2 � rÞ þ 2Reuhr2g @

2x
@r@h

� Revr3 @3x
@r2@h

� r2 @4x
@r2@h2 þ ðReur2 � rÞ @

3x
@r@h2 þ ðRe2uhvr3 þ Reuhhr2Þ @x

@r
þ Re2vr3 @

@h
@x
@t

� �
þ Rer2 @2

@h2

@x
@t

� �
:

Expressions for the higher order spatial derivatives of x can be found in a similar way. The approximations for the mixed

derivatives such as
@3x
@r2@h

;
@3x
@r@h2 and

@4x
@r2@h2 can be found out by the successive applications of the approximations for the

first and second derivatives given in (11) and (12). Note that all the derivatives appearing in s1 and s2 being approximated

are of the form
@pþqx
@rp@hq where p; q 6 2. Therefore the central difference approximations of these derivatives do not extend be-

yond one mesh length away from the point about which the finite differences are taken. As a result of this, the HOC com-
putational stencil is always restricted to a maximum of nine points as shown in Fig. 2. Once all the approximations are
substituted for the derivatives, the spatially HOC approximations of Eqs. (1) and (2) can be written as
A1i;jd
2
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2
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respectively, where the coefficients are given by
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The details of all the spatial finite difference operators appearing in Eqs. (19) and (20) can be found in the appendix.

Note that the expression Fij in Eq. (19) has a temporal derivative term
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. We use forward difference to discretize this

term and then a weighted average parameter value of 1
2 for this derivative [4,6,47] to arrive at a Crank–Nicolson type of

approximation for Eq. (19)
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� �
;

A13i;j ¼ ðReðH11 � c1H12Þ � 0:5DtA3i;jÞ; A23i;j ¼ ðReðH11 � c1H12Þ þ 0:5DtA3i;jÞ;
A14i;j ¼ r2

i ReðK11 þ riRev i;jK12Þ � 0:5DtA4i;j
� �

;

A24i;j ¼ r2
i ReðK11 þ riRev i;jK12Þ þ 0:5DtA4i;j

� �
;

A15i;j ¼ �0:5DtA5i;j; A25i;j ¼ 0:5DtA5i;j;

A16i;j ¼ �0:5DtA6i;j; A26i;j ¼ 0:5DtA6i;j;

A17i;j ¼ �0:5DtA7i;j; A27i;j ¼ 0:5DtA7i;j;

A18i;j ¼ �0:5DtA8i;j; A28i;j ¼ 0:5DtA8i;j:
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Thus (21) is the HOC approximation of the vorticity equation (1) which is at least third order accurate in space and second
order accurate in time; likewise, (20) is the approximation of the streamfunction equation (2). It may be noted that on a uni-
form grid the spatial accuracy of both (20) and (21) becomes four.

3.2. Approximation of the boundary conditions

The numerical implementation of the boundary conditions for u;v and w are straightforward. The vorticity x at the far
field is zero. It may be noted that for computational purpose we fix r as R1 at the far field. At the solid boundary, making use
of Eqs. (2) and (9), for all h at r ¼ R0, we have
x ¼ � @
2w
@r2 ð22Þ
thereat. We proceed to obtain a compact approximation of the vorticity on the solid boundary as follows:
Employing a Taylor series expansion, we get
0 ¼ �@w
@r

����
0;j
¼ �drw0;j þ

rf

2
@2w
@r2

�����
0;j

þ
r2

f

6
@3w
@r3

�����
0;j

þ
r3

f

24
@4w
@r4

�����
0;j

þ O r4
f

� �
ð23Þ
Using (22) in (23), we get the fourth order accurate expression
0 ¼ �drw0;j �
rf x0;j

2
þ

r2
f

6
@x
@r
þ

r3
f

24
@2x
@r2

 !�����
0;j

þ O r4
f

� �
ð24Þ
Making use of the fact that on the solid wall u ¼ 0; v ¼ 0, Eq. (1) yields,
@2x
@r2 ¼ Re

@x
@t
� 1

r0

@x
@r
� 1

r2
0

@2x
@h2 ð25Þ
Using (25) in (24) and after some simplifications we get,
0 ¼ �drw0;j �
rf

2
x0;j þ

r3
f

24r0
�

r2
f

6

 !
@x
@r

����
0;j
�

r3
f Re

24
@x
@t

�����
0;j

þ
r3

f

24r2

@2x
@h2

�����
0;j

: ð26Þ
Using forward difference for the temporal derivative and second order one-sided difference for the derivatives along r-direc-
tion, we finally get
xnþ1
0;j ¼

24Dt
r3

f Re

r3
f Re

24Dt
� rf

2
�

r3
f

24r0
�

r2
f

6

 !
ðr2 � r0Þ2 � r2

f

rf ðr2 � r0Þðr2 � r1Þ

 !
�

r3
f

24r2
0Dh

1
hf
þ 1

hf

� �( )
xn

0;j

"

þ
r3

f

24r2
0hbDh

xn
0;j�1

r3
f

24r2
0hf Dh

xn
0;jþ1 þ

r3
f

24r0
�

r2
f

6

 !
ðr2 � r0Þ2xn

1;j � r2
f x

n
2;j

rf ðr2 � r0Þðr2 � r1Þ

 !#
: ð27Þ
3.3. Calculation of drag and lift coefficients

In the case of viscous flows for bluff bodies immersed in fluids, the forces that are being exerted on the body come from
surface pressure distribution and surface friction. The surface pressure distribution can be calculated from the tangential
momentum equation at the surface of the body. To calculate the lift ðCLÞ and drag coefficients ðCDÞ, we use the following for-
mulas [39,44], respectively,
CL ¼
1
Re

Z 2p

0

@x
@r

� �
R0

�xR0

" #
coshdh; ð28Þ

CD ¼
1
Re

Z 2p

0

@x
@r

� �
R0

�xR0

" #
sinhdh: ð29Þ
The integral over h along the cylinder is numerically computed using Trapezoidal rule.

3.4. The Grid used

We employ a uniform grid spacing along the h-direction and nonuniform grid spacing in the r-direction with clustering
around the surface of the cylinder using the following functions:
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hj ¼
2p
jmax

and ri ¼ exp
kpi
imax

� �
:

Here the parameter k determines the outer radius of the computational domain. The continuity conditions at h ¼ 0 and
h ¼ 2p are taken as the boundary conditions along those two lines. A typical computational grid of size 101� 101 is shown
in Fig. 3.
r

θ

Fig. 3. A typical nonuniform 101� 101 mesh with clustering around the cylinder.
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θs

L

A B

S

y

x

Fig. 5. Geometrical parameters of the closed wake for the motion past a circular cylinder problem.

*

* * * * *

*

*
* * * * *

Time

A
ng

le
 o

f S
ep

ar
at

io
n

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

Re=20
Re=40
Experimental Results (Coutanceau&Bouard)*

Fig. 6. Comparison of angles of separation for low Res with the results of reference [30] for the motion past a circular cylinder problem.

*
*

* * * * * *

*
*

*
* * *

* *

Time

W
ak

e 
Le

ng
th

0 5 10 15 200

1

2

3

4

5
Re=20
Re=40
experimental results (Coutanceau & Bouard)*

Fig. 7. Comparison of wake length for low Res with the results of reference [30] for the motion past a circular cylinder problem.

J.C. Kalita, R.K. Ray / Journal of Computational Physics 228 (2009) 5207–5236 5215



*

*
*

* * * * *

time

D
ra

g 
C

oe
ffi

ci
en

t

0 2 4 6 8 100

2

4

6

8

10
Re=10

Re=20

Re=40

Re=40 (Koumoutsakos & Leonard)*

Fig. 8. Comparison of drag coefficient for low Res with the results of reference [44] for the motion past a circular cylinder problem.

#
#

#

#

#

#
# #

#

#

* *
*

*

*

*
* *

*
*
*

θ

Su
rf

ac
e 

Vo
rt

ic
ity

(ω
)

0 20 40 60 80 100 120 140 160 180
-1

0

1

2

3

4

5

6

7

8
Re=10
Re=20
Re=40
Re=20[Fornberg]
Re=40[Fornberg]
Re=10[Dennis&Chang]
Re=20[Dennis&Chang]
Re=40[Dennis&Chang]

#
*

Fig. 9. Comparison of vorticities on the cylinder surface for low Res with the results of references [33] and [34] for the motion past a circular cylinder
problem.

Table 1
Effect of grid size on wake lengths and separation angles.

Re ¼ 20 Re ¼ 40

Grid 75 101 151 75 101 151
hs 42.9248 43.2756 43.4224 51.3012 51.5342 51.7018
L 1.8331 1.8276 1.8226 4.4135 4.3988 4.3921
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4. Solution of algebraic systems

We now discuss the solution of algebraic systems associated with the newly proposed finite difference approximations.
The system of equations arising out of (20) and (21) can be written as
Table 2
Effect o

R1
hs

L

Table 3
Compar

L

hs

CD
X1

k1¼�1

X1

k2¼�1

g1iþk1 ;jþk2
wiþk1 ;jþk2

¼
X1

k1¼�1

X1

k2¼�1

n1iþk1 ;jþk2
giþk1 ;jþk2

; ð30Þ
and
X1

k1¼�1

X1

k2¼�1

g2iþk1 ;jþk2x
nþ1
iþk1 ;jþk2

¼
X1

k1¼�1

X1

k2¼�1

n2iþk1 ;jþk2x
n
iþk1 ;jþk2

; ð31Þ
where g1; n1 and g2; n2’s are functions of the coefficients appearing in the corresponding equations (2) and (1), their deriv-
atives and the step lengths rf ; rb; hf ; hb and Dt. In matrix form, the system of algebraic equations given by (30) or (31) can now
be written as
AU ¼ B; ð32Þ
where the coefficient matrix A is an asymmetric sparse matrix with each row containing at most nine non-zero entries. / is
the unknown vector w or x and B is the known (source) term. For a grid of size m� n;A is of size mn�mn, and U and B are
mn-component vectors.

The next step now is to solve Eq. (32); as the coefficient matrix A is not generally diagonally dominant, conventional solv-
ers such as Gauss–Seidel cannot be used. On uniform grids in Cartesian coordinates, some of the associated matrices are sym-
metric and positive definite, which allows algorithms like conjugate-gradient (CG) [1] to be used. As nonuniform grid and
variable coefficients of the derivatives appearing in Eqs. (1) and (2) invariably lead to non-symmetric matrices, in order
to solve these systems, we use the hybrid biconjugate gradient stabilized method BiCGStab(2) [1] without preconditioning.

It may be noted that for the coupled nonlinear PDEs (such as the w�x form of the N–S equations), an iterative solution
procedure must be adopted to solve the matrix equation of the type (32) at each time step. Both the vorticity (31) and stream
function (30) equations are solved using BiCGStab(2) which may be termed inner iterations. We utilize a relaxation param-
eter c for the inner iteration cycles for both x and w. For larger values of Reynolds number, we needed smaller values of c.

All of our computations were carried out on a Pentium 4 based PC with 512 MB RAM. For the inner iterations, the com-
putations were stopped when the norm of the residual vector �r ¼ B� AU (/ being either x or w) arising out of equation (32)
fell below 0:5� 10�6. For the cases where steady-state solution is obtained with a time-marching strategy, the steady-state
is assumed to reach when the maximum x-error between two successive time steps is smaller than 0:5� 10�7.

5. Results and discussion

We have used the proposed HOC scheme to visualize and analyze the flow patterns for Reynolds numbers ranging from
10 to 9500. Different grid sizes and outflow boundaries are used to capture the gradually increasing complex flow patterns.
The flow regime has been divided into four parts depending upon the almost identical flow characteristics observed within
each range. In the first part we discuss about the flow structures for 10 6 Re 6 40; available experimental and the numerical
results [29–31,33,34,41,43] show that steady-state is possible for this range. In the second part we discuss about the flow
f far field boundary on the wake lengths and separation angles.

Re ¼ 20 Re ¼ 40

35.03 60.14 75.17 35.03 60.14 75.17
43.6248 43.2156 42.9248 51.9612 51.6342 51.3012
1.8177 1.8253 1.8331 4.4044 4.4101 4.4135

ison of the wake lengths, separation angles and drag coefficients for different Reynolds numbers.

Re Ref. [33] Ref. [32] Ref. [34] Ref. [37] Ref. [41] Present

20 1.88 – 1.82 1.842 1.77 1.8331
40 4.69 – 4.48 4.49 4.21 4.4135
20 43.7 – 42.9 42.96 41.3277 42.9248
40 53.8 – 51.5 52.84 51.0249 51.3012
20 2.045 2.05 2.001 2.152 2.0597 2.0193
40 1.522 1.57 1.498 1.499 1.5308 1.5145
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structures for Re ¼ 60 and 200; here the wake behind the cylinder becomes unstable. Oscillations in the wake grow in ampli-
tude and finally forms a trail of vortices known as von Kármán vortex street. For the next higher Reynolds numbers being
discussed here, we consider only the early stage of the flow in the laminar regime. The first of these are Re ¼ 300 and
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Fig. 10. Streamlines (left) and vorticity contours (right) at Re ¼ 60 for flow past a circular cylinder at: (a) t ¼ 20, (b) 70, (c) 329, (d) 363, (e) 428 and (f) 468.
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550; for these Re, the flow properties are unsteady; secondary vortices develop at the initial stages, but do not split up fur-
ther. The flow is characterized by the secondary phenomena: (i) bulge phenomenon and (ii) isolated secondary eddy. In the
last part, we discuss the range 1000 6 Re 6 9500 having the most complicated flow properties associated with the so called
a- and b-phenomena [31,41,43].

5.1. Flows for 10 6 Re 6 40

As stated earlier, for the flow past an impulsively started circular cylinder, steady-state is possible up to Re ¼ 40. So in this
section, we compare our time-marching steady-state results with existing numerical and experimental results [30,32–
35,37,41,42,44] for Reynolds numbers Re ¼ 10; 20; and 40 in Figs. 4–9 and Tables 1–3.

In Fig. 4, we exhibit the streamlines and vorticity contours from Re ¼ 10 to 40. In all the cases, two symmetrical, station-
ary circulating eddies develop behind the cylinder. With increase in Re values, one can see the increase in the sizes of the
vortices.
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Fig. 11. For Re ¼ 60, (a) time history of the drag and lift coefficients, (b) streamline and (b) vorticity contours (corresponding to the peak value of the lift
coefficient) for the temporally periodic solution.
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We also compute the wake length L: the distance between the rear most point A of the cylinder to the end B of the wake
(Fig. 5), and the angle of separation hs, which is the angle between the x-axis and the line joining the center of the cylinder
and the point of separation S on the cylinder (Fig. 5). These parameters are then compared in Table 1 in order to verify the
grid-independence; the grid sizes range from 75� 75 to 151� 151 ðR1 ¼ 75:17Þ. Table 2 shows the variation of the same
parameters to check the dependence of the computed solution on the assumed far-field where R1s range from 35.03 to
75.17. Here the grid size has been fixed at 75� 75. From these tables, it is clear that a grid of size 101� 101 and a far-field
given by R1 ¼ 75 are enough for accurate resolution of the flow. In Table 3, we present our computed L; hs and the drag coef-
ficient CD along with those obtained by [32–34,37,41]. In Figs. 6 and 7, we compare the evolution of the angles of separation
and wake lengths at the earlier stages of the flow for 10 6 Re 6 40 with the results of [30]; Fig. 8 shows the time evolution of
the computed drag coefficients in the range 10 6 Re 6 40 along with those of [44]. We also compare the vorticity values
along the surface of the cylinder for the range of Reynolds numbers considered here with those of references [33,34] in
Fig. 9. In all the cases, we obtain excellent comparisons with the established numerical and experimental results, both qual-
itatively and quantitatively.

5.2. Flows for Re ¼ 60 and 200

The flow around a impulsively started circular cylinder for Re ¼ 60 and 200 eventually becomes periodic and is known to
develop vortex shedding represented by the von Kármán vortex street. The basic difference between the flow patterns of this
Re range with the previous one is that, the velocities increase with time more rapidly in the recirculating zone and the sec-
ondary vortices develop in this region. In these Re values, flow becomes unsteady. Careful flow visualization reveals that the
flow in the early stage of development in the laminar wake region is still two-dimensional and symmetric about the axis
h ¼ 0. Therefore, quite a few number of studies [33–36,43] have used only the upper half circular annular region to compute
the flow. However use of the complete annular region for computational purpose enabled us to capture the unsteady peri-
odic nature of the flow for Re ¼ 60 and 200 as well. For these two Reynolds numbers, we have used a 181� 181 grid and R1
is taken as around 35 times of the cylinder radius.

In Fig. 10, we show the evolution of streamlines and vorticity contours for Re ¼ 60 from t ¼ 20 having a symmetric pat-
tern and leading to the onset of asymmetry in the streamlines at a later time around t ¼ 329. The asymmetry in vorticity
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Fig. 13. The streamfunction contours depicting the wake behind three successive instants of time over one vortex shedding period for Re ¼ 200. (a) t ¼ t0,
(b) t ¼ t0 þ T

2 and (c) t ¼ t0 þ T .
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details are presented for the next Reynolds number 200, where we exhibit our numerical results for Re ¼ 200 from an early
to a periodic stage in Figs. 12–15. In Fig. 12, solution profiles are presented for various values of t till the onset of periodicity.
As seen from the figure, a symmetric flow was observed at the beginning (Fig. 12(a)), but the flow became unstable later on,
and finally the flow lost its symmetry (Fig. 12(b)–(e)). Eventually, the flow settled into a periodic nature (Fig. 12(n)). We
present the temporal evolution of streamlines and vorticity over one complete vortex shedding cycle of duration T in Figs.
13 and 14, respectively. The evolution of an impressive von Kármán vortex street, which is a regular feature for the Reynolds
numbers considered here, is clearly seen in these figures.

From Fig. 13, one can see the formation of eddies just behind the cylinder; these eddies are then washed away into the
wake region. Two eddies are shed just behind the cylinder within each period (see also Fig. 12(n) and Fig. 13(a)). Fig. 13(a)
and (b) are half a vortex shedding cycle apart, and middle Fig. 13(b) is a mirror image of Fig. 13(a) and (c). The corresponding
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Fig. 16. Radial velocity along the axis of flow for the motion past a circular cylinder for Re ¼ 200 at the earlier stages of the flow and comparison with
reference [31].
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Table 4
Comparison of Strouhal numbers, drag and lift coefficients of the periodic flow for Re ¼ 60 and 200.

Re ¼ 60 Re ¼ 200

Reference St CD CL Reference St CD CL

Williamson (exp.) [53] 0.135 Williamson (exp.) [53] 0.197
Tritton (exp.) [32] 0.137 1.387 Le et al. [40] 0.187 1.34 ± 0.030 ± 0.43
Goldstein (exp.) [3] 0.140 Linnick and Fasel [40] 0.197 1.34 ± 0.044 ±0.69
Friehe (exp.) [55] 0.135 Frank et al. [24] 0.194 1.31 ± 0.65
Mittal and Raghuvanshi [27] 0.142 1.489 ± 0.002 ± 0.144 Berthelsen and Faltinsen [40] 0.200 1.37 ± 0.046 ± 0.70
Present study 0.140 1.464 ± 0.003 ±0.151 Present study 0.210 1.35 ±0.053 ±0.53
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vorticity contours are depicted in Fig. 14(a)–(c). The staggered nature of the Kármán shedding is clear from these plots. The
crests and troughs of the sinuous waves in the streamlines reflect the alternatively positive and negative vorticities of the
eddies. Apart from Figs. 13 and 14, the periodic nature of the flow is apparent from Fig. 15 where we have depicted the time
evolution of the drag and lift coefficients for this Reynolds number. In Fig. 16, we compare the radial velocity values obtained
by our computations at earlier stages along the axis of flow with those of the experimental results of Bouard et al. [31]. Note

that u� ¼ u
U1

and x� ¼ x
D

here. Our results match excellently with the experimental ones. In Fig. 17, vorticity distributions

along the solid surface are shown for the same interval of time.
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We also calculate the Strouhal St number for Re ¼ 60 and 200, which characterizes the vortex shedding process and is

estimated from the periodic variation of the lift coefficient. It is defined as St ¼ nD
U1

[32], where n is the dominant frequency

of the lift variations, which we compute by a spectral analysis of a time sample of the lift coefficients. The power density
spectra of this analysis is shown in Fig. 18(a). Fig. 18(b) displays the phase-plane of u� v velocity at the monitoring point
(1.260, �0.067) for the same time sample; it clearly establishes the periodic nature of the flow for these two Reynolds num-
bers. In Table 4, we compare our computed Strouhal numbers, drag and lift coefficients for these two Re with established
experimental and numerical results; for both Re, we obtain very close comparisons.
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Fig. 20. Streamlines (left) and vortcity contours (right) for Re ¼ 550 at different instants of time.



5.3. Flows for 300 and 550

For these two Reynolds numbers, the flow eventually becomes three-dimensional. For computational purpose, we have
used a 181� 181 grid for both Re values and R1 is taken as around 35 times of the cylinder radius for Re ¼ 300, and 20 times
of cylinder radius for Re ¼ 550. We present the flow patterns for Re ¼ 300 and Re ¼ 550 at different instances of the early
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stages of the development of the wake in Figs. 19 and 20. Both these figures show the gradual increase in the length and
width of the wake as time progresses. However, no development of secondary vortex is seen for Re ¼ 300 at this initial stage
which is visible for Re ¼ 550 at t ¼ 2:0. The equivorticity contours in these figures are also in close agreement with the ones
available in the literature [40]. The length of the wake for Re ¼ 300 is larger than that of Re ¼ 550 for the same instants of
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Fig. 23. Streamlines for Re ¼ 1000 at (a) t ¼ 1:25, (b) t ¼ 1:75, (c) t ¼ 2:50, (d) t ¼ 3:50, (e) t ¼ 4:50 and (f) t ¼ 6:00.





Table 6Effect of far “eld aR¼
241�401 5.91841 72945241�401 10.91851 73.04
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onstrating the efficiency of our scheme. They also represent the secondary phenomena [30]: (i) the bulge phenomenon and
(ii) isolated secondary eddy. In Fig. 21 (top), the streamlines near the cylinder wall which are almost halfway between the
stagnation and separation points show some distortion. The fluid particles passing through this region deviate from the cyl-
inder which cause a bulge in the streamline pattern. This is known as the bulge phenomenon. On the other hand, for greater
values of Reð500 6 Re 6 800Þ, this bulge gives rise to closed streamlines which form a small secondary eddy (see Fig. 22
(top)).
nd grid size on the wake lengths and separation angles fore9500 att¼1:.9Grid SizeR1L hs301�301 10.91809 75.601
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Fig. 26. Far field effect for the motion past a circular cylinder, streamlines for Re ¼ 9500 at time t ¼ 1:00: (a) R1 ¼ 5 (top), (b) R1 ¼ 10 (bottom).
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eddies thus formed are equivalent in strength and size and constitute a pair of secondary eddies (Fig. 23(e) and (f)). This is
what is known as the a-phenomenon. The corresponding vorticity patterns for this time period are shown in Fig. 24(a)–(f)
which are very close to the ones presented in [36,38,39,44]. The a-phenomenon for Re ¼ 3000 can be seen in Fig. 25 where
we present the simulation of the streamlines captured by our scheme at t ¼ 2:5 side by side with the experimental results of
x

y

0 1 2 3

-1

0

1

a

b

Fig. 30. The motion past a circular cylinder, streamlines for Re ¼ 5000 at time t ¼ 1:50: (a) Numerical (top), (b) Experimental (bottom [31]).
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Fig. 31. The motion past a circular cylinder, streamlines for Re ¼ 5000 at time t ¼ 2:00: (a) Numerical (top), (b) Experimental (bottom [31]).
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reference [31]. Again the experimental and numerical results are extremely close, thus demonstrating the robustness of our
proposed scheme.

In Table 5, we present comprehensive data of the parameter values used for the Reynolds numbers considered for com-
putation in the early stages of the flow. Here c represents the under-relaxation parameter and Nin is the upper limit of the
number of inner iterations required for the residual to fall below the tolerance limit as described in Section 4. As can be seen
from the table, computational complexity increases with higher Reynolds numbers.

In Table 6, the effect of the grid size and the far field boundary conditions are presented for Re ¼ 9500 at time t ¼ 1. Fig. 26
compares the streamlines for R1 ¼ 5 and R1 ¼ 10 at the same instant on a grid of size 401� 241. The table and the figures
suggest that the influence of grid size and the domain of computation on the flow structure induces a slight variation. The
percentage change in both L and hs were 0.8 as R1 was increased from 5 to 10.

Figs. 27 and 28 show the comparison of the experimental [31] and our computed results for the streamline patterns at
time t ¼ 0:75 and t ¼ 1:00, respectively. In both the cases the match is very close. These two figures represent the so called
b-phenomenon: at the very early stage of the flow (at around t ¼ 0:5 [31]), a very thin recirculating wake (fitting exactly the
cylinder shape) is formed; but soon afterwards at t ¼ 0:75 (Fig. 27), the core of this recirculating zone rotates in one piece,
much faster compared to the other part of the separated zone, forming a vortex which increases in size and strength with
time. At time t ¼ 1:00 (Fig. 28), this vortex separates the initial wake into two parts. The one situated near the point of sep-
aration S (as had been detailed in Fig. 5) is occupied by a pair of secondary vortices whose nature is similar to those that had
been described for Re ¼ 1000 and 3000, but differing in details. Interestingly, while only the b-phenomenon is observed for
Re ¼ 9500 at the very initial stage of the flow, for Re ¼ 5000, both a and b phenomena are observed one after another
[31,42,43]. Figs. 29 and 30 which compare the streamlines computed by the present scheme and the experimental results
of [31] at time t ¼ 1:00 and t ¼ 1:50, respectively for Re ¼ 5000 represent the b phenomenon. Likewise Figs. 31 and 32,
depicting the numerical and experimental streamlines at t ¼ 2:00 and t ¼ 2:50, respectively represent the a-phenomenon.
Some discrepancies between the experimental and numerical results for Re ¼ 5000 in the early stage of the flow could be
seen in some of the earlier reported results [25,41]. Our numerical results for this Reynolds number are probably closest
to the experimental ones in terms of the size and shape of the vortices and wake lengths in comparison to other
computations.

6. Conclusion

Differential equation based HOC schemes on geometries beyond rectangular, particularly on polar coordinates have so far
been developed with the help of grid transformation only. In this paper, we develop an implicit, temporally second order
accurate and spatially at least third order accurate scheme for the N–S equations in the w�x form on nonuniform polar
) Numerical (top), (b) Experimental (bottom
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grids without transformation. We specifically fine-tune the scheme for simulating flows in the classical problem of unsteady
incompressible viscous flow past an impulsively started cylinder. In the process, we have also developed compact higher or-
der approximations for the Dirchlet boundary conditions for vorticity. We computed the flow for a wide range of Reynolds
numbers ranging from 10 to 9500. The flow features which are typical of certain sub-ranges of the Re considered are dis-
cussed in details. We compare our results with established experimental and numerical results, and excellent comparison
is obtained in all the cases, both qualitatively and quantitatively. The robustness of the scheme is highlighted when it cap-
tures the periodic nature of the flow for Re ¼ 60 and 200 which is characterized by vortex shedding represented by the von
Kármán street and also by the fact that it very accurately captures the so called secondary phenomena for moderate and a
and b-phenomena for higher Re. The scheme also very efficiently and accurately captures the flow past a rotating cylinder,
which will be discussed in our very next paper. The strength of our scheme is exemplified by the fact that flow simulations
from our computations are much closer to the experimental visualization than other existing numerical simulations avail-
able in the literature, particularly for the higher Reynolds numbers.
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Appendix A. Details of the finite difference operators

The expressions for the finite difference operators appearing in the various equations in Section 3 are as follows:
dr/i;j ¼
/iþ1;j � /i�1;j

2Dr

dh/i;j ¼
/i;jþ1 � /i;j�1

2Dh

d2
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� �
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� �
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4DrDh
f/iþ1;jþ1 � /iþ1;j�1 � /i�1;jþ1 þ /i�1;j�1g:
Here rf ¼ ðriþ1 � riÞ; rb ¼ ðri � ri�1Þ; hf ¼ ðhjþ1 � hjÞ; hb ¼ ðhj � hj�1Þ;Dr ¼ ðrf þ rbÞ=2 and Dh ¼ ðhf þ hbÞ=2 as defined in Section
3.

References

[1] C.T. Kelley, Iterative methods for linear and nonlinear equations, SIAM Publications, Philadelphia, 1995.
[2] Z. Kopal, Numerical Analysis, second ed., Chapman and Hall, London, UK, 1961.
[3] S. Goldstein, Modern developments in fluid dynamics, Clarendon Press, Oxford, 1938.
[4] J.C. Kalita, D.C. Dalal, A.K. Dass, A class of higher order compact schemes for the unsteady two-dimensional convection–diffusion equations with

variable convection coefficients, Int. J. Numer. Methods Fluids 38 (2002) 1111–1131.
[5] J.C. Kalita, A.K. Dass, D.C. Dalal, A transformation-free HOC scheme for steady-state convection–diffusion on non-uniform grids, Int. J. Numer. Methods

Fluids 44 (2004) 33–53.
[6] J.C. Kalita, A.K. Dass, N. Nidhi, An efficient transient Navier–Stokes solver on compact nonuniform space grids, J. Comp. Appl. Math. 214 (2008) 148–

162.
[7] M.M. Gupta, R.P. Manohar, J.W. Stephenson, A single cell high order scheme for the convection–diffusion equation with variable coefficients, Int. J.

Numer. Methods Fluids 4 (1984) 641–651.
[8] R.J. Mackinnon, R.W. Johnson, Differential equation based representation of truncation errors for accurate numerical solution, Int. J. Numer. Methods

Fluids 13 (1991) 739–757.



5236 J.C. Kalita, R.K. Ray / Journal of Computational Physics 228 (2009) 5207–5236
[9] W.F. Spotz, G.F. Carey, High-order compact scheme for the steady stream-function vorticity equations, Int. J. Numer. Methods Eng. 38 (1995) 3497–
3512.

[10] S.K. Lele, Compact finite difference schemes with spectral like resolution, J. Comput. Phys. 103 (1992) 16–42.
[11] M. Li, T. Tang, B. Fornberg, A compact fourth order finite difference scheme for the steady incompressible Navier–Stokes equations, Int. J. Numer.

Methods Fluids 20 (1995) 1137–1151.
[12] Y. Adam, Highly accurate compact implicit methods and boundary conditions, J. Comput. Phys. 24 (1977) 10–22.
[13] R.S. Hirsh, Higher-order accurate difference solutions of fluid mechanics problems by a compact differencing technique, J. Comput. Phys. 19 (1975) 90–

109.
[14] M.R. Visbal, D.V. Gaitonde, On the use of higher-order finite-difference schemes on curvilinear and deforming meshes, J. Comput. Phys. 181 (2002)

155–185.
[15] T.K. Sengupta, G. Ganeriwal, S. De, Analysis of central and upwind compact schemes, J. Comput. Phys. 192 (2) (2003) 677–694.
[16] S.E. Sherer, J.N. Scott, High order compact finite-difference methods on general overset grids, J. Comput. Phys. 210 (2005) 459–496.
[17] H. Blasius, Grenzschichten in Flussigkeiten mit kleiner Reibung, Z. Math. Phys. 56 (1908) 1–37.
[18] S. Goldstein, L. Rosenhead, Boundary layer growth, Proc. Cam. Phil. Soc. 32 (1936) 392–401.
[19] H. Schuh, Calculation of unsteady boundary layers in two-dimensional laminar flow, Z. Flugwiss. 1 (1953) 122–131.
[20] H. Wundt, Wachstum der laminaren Grenzschicht an schrag angestromten Zylindern bei Anfahrt aua der Ruhe, Ing.-Arch. Berlin 23 (1955) 212.
[21] E.J. Watson, Boundary layer growth, Proc. R. Soc. Lond. 231 (A) (1955) 104–116.
[22] C.Y. Wang, The flow past a circular cylinder which is started impulsively from rest, J. Math. Phys. 46 (1967) 195–202.
[23] W.M. Collins, S.C.R. Dennis, The initial flow past an impulsively started circular cylinder, Q. J. Mech. Appl. Math. 26 (1973) 53–75.
[24] R. Franke, W. Rodi, B. Schonung, Numerical calculation of laminar vortex-shedding flow past cylinders, J. Wind Eng. Ind. Aerodynam. 35 (1990) 237–

257.
[25] T.K. Sengupta, R. Sengupta, Flow past an impulsively started circular cylinder at high Reynolds number, Comp. Mech. 14 (1994) 298–310.
[26] A. Dipankar, T.K. Sengupta, S.B. Talla, Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds numbers, J.

Fluid Mech. 573 (2007) 171–190.
[27] S. Mittal, A. Raghuvanshi, Control of vortex shedding behind circular cylinder for flows at low Reynolds numbers, Int. J. Numer. Methods Fluids 35

(2001) 421–447.
[28] S. Xu, Z.J. Wang, An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. Comput. Phys. 216 (2006) 454–493.
[29] M. Coutanceau, R. Bouard, Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform

translation. Part 1. Steady flow, J. Fluid Mech. 79 (1977) 231–256.
[30] M. Coutanceau, R. Bouard, Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform

translation. Part 2. Unsteady flow, J. Fluid Mech. 79 (1977) 257–272.
[31] R. Bouard, M. Coutanceau, The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 104, J. Fluid Mech. 101 (3)

(1980) 583–607.
[32] D.J. Tritton, Experiments on the flow past a circular cylinder at low Reynolds numbers, J. Fluid Mech. 6 (1959) 547–567.
[33] S.C.R. Dennis, G.Z. Chang, Numerical solution for study flow past a circular cylinder at Reynolds numbers up to 100, J. Fluid Mech. 42 (1970) 471–489.
[34] B. Fornberg, A numerical study of steady viscous flow past a circular cylinder, J. Fluid Mech. 98 (1980) 819–855.
[35] B. Fornberg, Steady viscous flow past a circular cylinder up to Reynolds number 600, J. Comput. Phys. 61 (1985) 297–320.
[36] C.R. Anderson, M.B. Reider, A high order explicit method for the computation of flow about a circular cylinder, J. Comput. Phys. 125 (1996) 207–224.
[37] X. He, G. Doolen, Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder, J. Comput. Phys. 134 (1997) 306–315.
[38] L. Qian, M. Vezza, A vorticity-based method for incompressible unsteady viscous flows, J. Comput. Phys. 172 (2001) 515–542.
[39] R.K. Shukla, M. Tatineni, X. Zhong, Very high order compact finite difference schemes on non-uniform grids for incompressible Navier–Stokes

equations, J. Comput. Phys. 224 (2007) 1064–1094.
[40] P.A. Berthelsen, O.M. Faltinsen, A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries, J. Comput.

Phys. 227 (2008) 4354–4397.
[41] Y.V.S.S. Sanyasiraju, V. Manjula, Flow past an impulsively started circular cylinder using a higher-order semicompact scheme, Phys. Rev. E 72 (016709)

(2005) 1–10.
[42] T.P. Loc, Numerical analysis of unsteady secondary vortices generated by an impulsively started circular cylinder, J. Fluid Mech. 100 (1980) 111–128.
[43] T.P. Loc, R. Bouard, Numerical solution of the early stage of the unsteady viscous flow around a circular cylinder: a comparison with experimental

visualization and measurements, J. Fluid Mech. 160 (1985) 93–117.
[44] P. Koumoutsakos, A. Leonard, High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, J. Fluid Mech. 296

(1995) 1–38.
[45] W.F. Spotz, G.F. Carey, Formulation and experiments with high-order compact schemes for nonuniform grids, Int. J. Numer. Methods Heat Fluid Flow 8

(3) (1998) 288–303.
[46] J. Zhang, L. Ge, M.M. Gupta, Fourth order compact difference scheme for 3D convection–diffusion equation with boundary layers on nonuniform grids,

Nural Parallel Sci. Comput. 8 (2000) 373–392.
[47] S.K. Pandit, J.C. Kalita, D.C. Dalal, A transient higher order compact scheme for incompressible viscous flows on geometries beyond rectangular, J.

Comput. Phys. 225 (2007) 1100–1124.
[48] M.C. Lai, A simple compact fourth-order Poisson solver on polar geometry, J. Comput. Phys. 182 (2002) 337–345.
[49] M.M. Gupta, A fourth order Poisson solver, J. Comput. Phys. 55 (1984) 166–172.
[50] S.R.K. Iyengar, R. Manohar, High order difference methods for heat equation in polar cylindrical coordinates, J. Comput. Phys. 77 (1988) 425–438.
[51] M.K. Jain, R.K. Jain, M. Krishna, A fourth-order difference scheme for quasilinear Poisson equation in polar co-ordinates, Commun. Numer. Methods

Eng. 10 (1994) 791–797.
[52] Y. Zhuang, X.H. Sun, A high order fast direct solver for singular Poisson equations, J. Comput. Phys. 171 (2001) 79–94.
[53] C.H.K. Williamson, Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, J. Fluid Mech. 206 (1989)

579–627.
[54] C. Norberg, An experimental investigation of the flow around a circular cylinder: influence of aspect ratio, J. Fluid Mech. 258 (1994) 287–316.
[55] C.A. Friehe, Vortex shedding from cylinders at low Reynolds numbers, J. Fluid Mech. 100 (1980) 237–241.


	A transformation-free HOC scheme for incompressible viscous flows past an impulsively started circular cylinder
	Introduction
	The problem and the governing equations
	Discretization and mathematical formulation
	The numerical scheme
	Approximation of the boundary conditions
	Calculation of drag and lift coefficients
	The Grid used

	Solution of algebraic systems
	Results and discussion
	Flows for 10 \les Re \les 40
	Flows for Re=60 and 200
	Flows for 300 and 550
	Flows for Re=1000, 3000, 5000 and 9500

	Conclusion
	Acknowledgment
	Details of the finite difference operators
	References


